Overview of The Palomar Testbed Interferometer

David Ciardi 2002 Interferometry Summer School

Outline

- Brief Overview of two-element interferometer
- Tour of PTI
- Understanding visibilities
- PTI & Scientific Applications

Palomar Testbed Interferometer (PTI)

PTI Vital Statistics

http://huey.jpl.nasa.gov/palomar

PTI is a Near-IR single-baseline interferometer

- > 40 cm Sidereostats, NS (110 m) and NW (85 m) baseline combination
- > 1" FOV, 1-100 mas size sensitivity
- > 1.65 μm & 2.2 μm Five Spectral Channels (R~20)
- > Limiting Mag K ~ 6, V~10

PTI Photo Tour

PTI Siderostats

PTI Siderostats

PTI Vacuum Tubes

PTI Delay Lines

PTI Delay Lines

PTI Primary Recombination Table

PTI Beam Combination Table

Fringe Visibility

- Constructive & destructive interference of light
- Fringe contrast or visibility:

$$V = \frac{I^+ - I^-}{I^+ + I^-}$$

- Calibration issues
 - Detector linearity
 - Zero point measurement
 - Noise characterization
- Coherence Time of Atmosphere: ~10 ms

Actual starlight fringes from IOTA - β And Photo credit: R.R. Thompson

Visibility Functions

- Need to convert the measured visibilities or fringe contrasts into something meaningful
- Visibility is measure of the intensity of the light fringes at a location in the *u*, *v* plane
- u,v plane Fourier Transform image plane
- Sampling in u, v plane depends on
 - source location
 - telescope location/orientation
 - hour angle coverage
- Because not a filled aperture, incomplete sampling in u,v plane
- Loss of phase information at PTI

Typical Observing Program

- Calibration star ('calibrator') target calibrator
 - Bracket the target with unresolved sources.
 - Time dependence of atmosphere, instrument
- Evolving targets
 - Can appear change with baseline projection, time, wavelength
 - Calibrator target calibrator resolved calibrator
 - Choose a secondary resolved object not expected to evolve

Visibility Function: Calibrators

- Atmospheric and instrumental effects reduce system V²
- Observe 'unresolved' sources to establish system response
 - Use an estimate of size
 - Assume V^2 gains are equal
 - Flattening portion of visibility function → errors in calibrator size do not translate into errors in system V²
- PTI Unresolved Calibrators <0.7 mas

PTI Visibility Data

What's the Big Deal?

- V² data by itself is not terribly useful information
- Through the use of ancillary data and models, it is enormously powerful
 - Interferometrists need to make lots of singledish friends
 - Or be fully paid up on their journal subscriptions

Science with PTI

22 Refereed Journal Articles since 1998

Single Stars:

For a "uniform disk" visibility matches:

$$V = \frac{J_1(x)}{x}$$

$$x = \frac{\pi \theta B}{\lambda}$$

B is the projected baseline θ is the stellar disk size λ is the wavelength

- Baseline, wavelength known
- Solve for stellar angular diameter θ

Single Stars: Basic Parameters from Angular Diameters (θ)

- Direct observation of fundamental stellar parameters
- Effective temperature is defined as: $L = 4\pi\sigma R^2 T_{EFF}^4$,

which can be rewritten as: $T_{\text{EFF}} = 1.316 \times 10^7 \left(\frac{F_{\text{BOL}}}{\theta_{\text{R}}^2} \right)^{1/4}$

- $-F_{BOL}$ is the bolometric flux (W cm⁻²), θ_{R} is the Rosseland mean stellar angular diameter (mas)
- Linear radius is simply:
 - Hipparcos (Perryman et al. 1997) distances now available
 - Uncertainties in parallax (typically ~15-20%) still largest contribution to error R-1/A

Evolved Stars: Effective Temperature vs. V-K Color

- Blue: Blackbody behavior
- Indications of increased absorption bands at V at low T_{EFF} (Barbuy *et al.* 1992, Jørgensen 1994)
- Clear separation of the abundance subtypes into regions on the plot
- PTI/IOTA data

Evolved Stars: Effective Temperature vs. K-[12] Color

- K-[12] reasonable indicator of dusty mass loss
- Blue: Blackbody behavior
- Substantial departure from BBR curve at K-[12] ~ 0.80 by Miras, carbon stars
- Indication of onset of mass loss (Le Sidander & Le Bertre 1996,
 Beichman et al. 1990) for the more evolved stars
- PTI/IOTA data

Single Stars II: Rotational Velocity

- Altair observed with NS and NW baselines.
- Yield different V² measurements
- Unique solution for $v \sin i = 210\pm12$ km/s
- Altair 10h rotation!

Single Stars III: Cepheids

First Direct
 measurement of
 radial size
 changes of
 cepheid variable.

Binary Star Systems

Two point sources

$$V(s) = [P_0 + (1 - P_0)\cos^2(\pi s r)]^{1/2}$$

$$P_0 = \left(rac{B_1 - B_2}{B_1 + B_2}
ight)^2$$

- B1 & B2 brightness of sources.
- r = binary separation
- s = baseline/wavelength

Figure 12.7: Double-star visibility curves. Note how the position and depth of the minima change with separation and brightness ratio, respectively.

1 Pegasi

One HST WFPC 2 Pixel

- Well-known binary system
- Established as a SB2 by Fekel and Tomkin who inferred the "possibility of eclipses" (1983)
- Average Absolute V²
 Residual 1.4% Over
 114 Scans
- Precision photometry: no eclipses (Boden *et al.* 1998 *ApJ*)

Circumstellar Material

- Circumstellar Disk: measured visibility is resultant of Stellar Disk + Circumstellar Disk
- Simplest Case:
 - Unresolved Star
 - Uniform Circumstellar
 Disk
- Vp = flux ratio between star and disk
- a = size of disk
- No reason star needs to be unresolved ...

Figure 12.9: The visibility curve for a uniform-disk surrounding a point. The disk size is 30 mas and there is 50% in each of the two components.

Circumstellar Material I: YSOs

- T Tauri stars are solarlike pre-main sequence stars.
 - Surrounded by accretion disk
- SED modeling predicts much smaller inner radius than measured by PTI.
- SU Aur: same result

NIR SED Modeling
PTI V² Modeling
MM SED Modeling

Circumstellar Material II: Vega

- Fit Vega with Stellar Disk.
- Unexplained residuals in fit.
- Added disk with 5% flux.
 - Appropriately corrects fitting.

Dual Star Astrometry

- Primary star (target) bright
 - Used to stabilize interferometer
- Secondary star faint
 - Position reference
 - Located in same isoplanatic patch as primary star
 - Long integration times possible
- Delay line position difference
 - Proportional to angular separation between stars
 - Measured with laser metrology
 - Wobble in separation indicative of unseen companion

PTI Astrometry on 61 Cygni

Dual-Object Phase Referencing

- Phase referenced interferometry: the analog of single-aperture AO
 - Fringe tracking piston
 correction signal on one object
 is used to correct the piston on
 a second, nearby (isoplanatic
 separation) object.
 - Required for KI (and VLTI) faint-object interferometry
 - Phase error with and without loop closed between the two PTI fringe trackers.
 - Two data segments taken within 200 s of each other.
- Objective: long synthetic coherence time for faintobject detection

